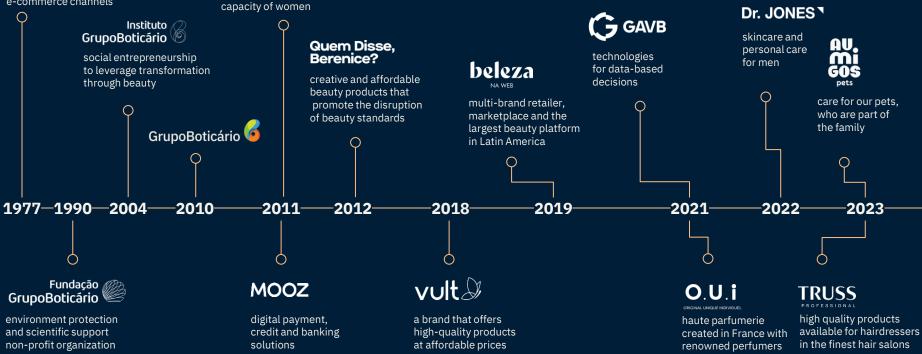


Assessing Computational Approaches for Predicting Estrogen Receptor Binding

Gabriela O. P. Corrêa, PhD Product Safety Researcher

Safety Assessment Management

ASCCT-ESTIV Award Winners Webinar Series


OBOTICÁRIO

the group's first-born brand and the largest beauty franchise network in the country; it can be found in branded store, direct sales and e-commerce channels

EUDORA

efficient and innovative beauty solutions that encourage the achievement capacity of women

GrupoBoticário

Background

- Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that may mimic, block, or interfere with the body's hormonal systems. These chemicals are associated with a wide array of health issues;
- Classical targets of EDCs include nuclear receptors such as estrogen receptors (ER), androgen receptors (AR), thyroid receptors (TR), among others;

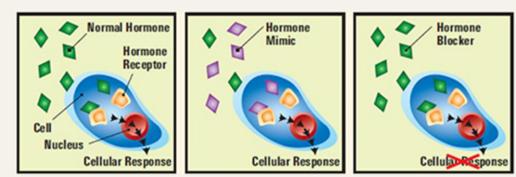
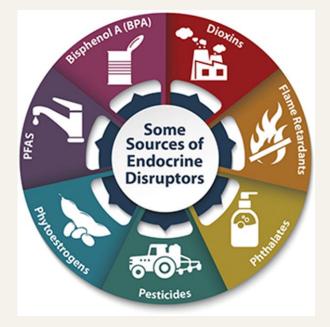



Figure 1. Sources of endocrine disruptors (NIH, 2024)

Figure 2. When absorbed in the body, an EDC can decrease or increase normal hormone levels (left), mimic the body's natural hormones (middle), or alter the natural production of hormones (right) (NIH, 2024)

International Journal of **Endocrinology**

Review Article 🗴 Open Access 🛛 😨 🗿

Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics—In Vitro Studies

Yixuan Zhang, Lihong Tu, Jian Chen 🔀, Lihong Zhou 🔀

First published: 03 December 2024 | https://doi.org/10.1155/ije/2564389

Academic Editor: Malgorzata Kotula Balak

Open Access Review

Endocrine Disruptors in Cosmetic Products and the Regulatory Framework: Public Health Implications

by Paraskevi Kalofiri * ⊠, Foteini Biskanaki * ⊠, Vasiliki Kefala ⊠, Niki Tertipi ⊠©, Eleni Sfyri ⊠⊙ and Efstathios Rallis ⊠⊙

Department of Biomedical Sciences, School of Health Sciences and Welfare, University of West Attica, 12243 Athens, Greece

* Authors to whom correspondence should be addressed.

Cosmetics 2023, 10(6), 160; https://doi.org/10.3390/cosmetics10060160

Open Access Review

Synthetic Endocrine Disruptors in Fragranced Products

by Sawyer Ashcroft ¹ , Noura S. Dosoky ¹ , William N. Setzer ^{2,3} , ⁰ and Prabodh Satyal ^{2,*} , ⁰

- ¹ Essential Oil Science, doTERRA International, Pleasant Grove, UT 84062, USA
- ² Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- ³ Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35803, USA
- * Author to whom correspondence should be addressed.

> Eur J Dermatol. 2024 Feb 1;34(1):40-50. doi: 10.1684/ejd.2024.4615.

Market analysis of the presence of endocrine disrupting chemicals in cosmetic products intended for oncological patients and other vulnerable groups

María-Elena Fernández-Martín ¹, José V Tarazona ²

Affiliations + expand PMID: 38557457 DOI: 10.1684/ejd.2024.4615

This study aimed to assess the **sensitivity** and **specificity** of *in silico* tools in **predicting the binding of chemicals to estrogen receptor**;

This is an important endpoint for cosmetic products, considering human health and the environment

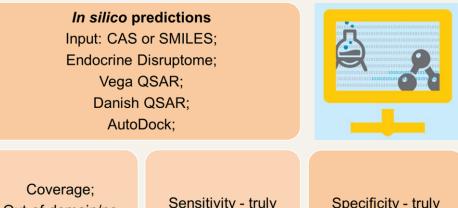
Methodology

Training set - 20 proficiency chemical substances

- **OECD Test No. 455:** Performance-Based Test Guideline for Stably Transfected Transactivation *In Vitro* Assays to Detect Estrogen Receptor Agonists and Antagonists;
- **OECD Test No. 493:** Performance-Based Test Guideline for Human Recombinant Estrogen Receptor (hrER) *In Vitro* Assays to Detect Chemicals with ER Binding Affinity;
 - ★ Positive substances: 14 (70%) exhibit affinity for the receptor;
 - ★ Negative substances: 6 (30%) do not exhibit affinity for the receptor;

 Table 1. OECD proficiency chemical substances

Substances	CAS RN		
Diethylstilbestrol	56-53-1		
17α-estradiol	57-91-0		
meso-Hexestro	84-16-2		
4-tert-Octylphenol	140-66-9		
Genistein	446-72-0		
Bisphenol A	80-05-7		
Kaempferol	520-18-3		
Butylbenzyl phthalate	85-68-7		
p.p'- Methoxychlor (Methoxychlor)	72-43-5		
17α-ethynylestradiol	57-63-6		
Norethynodrel	68-23-5		
Zearalonone	17924-92-4		
Butylparaben	94-26-8		
Ethylparaben	120-47-8		
Atrazine	1912-24-9		
Spironolactone	52-01-7		
Ketoconazole	65277-42-1		
Reserpine	50-55-5		
Octyltriethoxysilane	2943-75-1		
Corticosterone	50-22-6		


CAS RN: Chemical Abstracts Service Registry Number.

Methodology

Figure 4. Study design

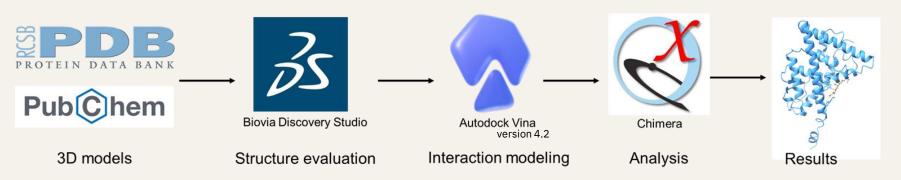
Training set

(i) List of proficiency substances for agonist assay (OECD 455);(ii) List of controls and proficiency substances for the hrER competitive binding assays (OECD 493);

Coverage; Out-of-domain/no predictions made; Correct predictions

Sensitivity - truly positive/active substances Specificity - truly negative/inactive substances

Models:


- Endocrine Disruptome
 - ER α and ER β ;
- Vega QSAR
 - Estrogen Receptor-mediated effect (IRFMN-CERAPP) 1.0.1;
 - Estrogen Receptor Relative Binding Affinity model (IRFMN) 1.0.2;
- Danish QSAR
 - Estrogen Receptor α Binding, Full training set (Human *in vitro*);
 - Estrogen Receptor α Binding, Balanced Training Set (Human *in vitro*);
 - Estrogen Receptor α Activation (Human *in vitro*);
 - Estrogen Receptor Activation, CERAPP data (*in vitro*);

Methodology

- **AutoDock** was used to perform **molecular docking**, polar hydrogens and Kollman charges were added to the <u>protein structure (Estrogen receptor PDB code: 1a52)</u> and the number of torsions in the ligand was established;
- For results → Substances were considered **positive**, indicating a high probability of binding, when the **binding affinity was ≥ -7.5**. Substances that obtained values < 7.5 were classified as negative;

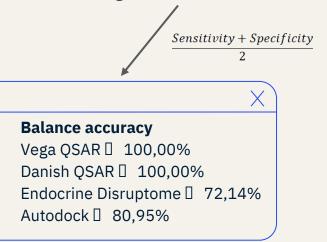
Figure 5. Molecular docking design

Table 2. In silico predictions results

Substances	OECD 493/455	VEGA QSAR	Danish QSAR	Endocrine Disruptome	AutoDock
Diethylstilbestrol	POS	POS	POS	POS	POS
17α-estradiol	POS	POS	POS	POS	POS
meso-Hexestro	POS	POS	POS	POS	POS
4-tert-Octylphenol	POS	POS	POS	NEG 🔶	– NEG 🗲
Genistein	POS	POS	POS	POS	POS
Bisphenol A	POS	POS	POS	POS	POS
Kaempferol	POS	POS	POS	POS	POS
Butylbenzyl phthalate	POS	POS	POS	NEG 🖛	- POS
p.p'- Methoxychlor (Methoxychlor)	POS	POS	POS	NEG 🗲	- POS
17α-ethynylestradiol	POS	POS	POS	POS	POS
Norethynodrel	POS	POS	POS	POS	POS
Zearalonone	POS	POS	POS	POS	POS
Butylparaben	POS	POS	POS	NEG 🔶	– NEG 🗲
Ethylparaben	POS	POS	OUT	NEG 🔶	– NEG 🔶
Atrazine	NEG	NEG	NEG	NEG	NEG
Spironolactone	NEG	OUT	NEG	NEG	NEG
Ketoconazole	NEG	NEG	NEG	POS	POS
Reserpine	NEG	NEG	NEG	NEG	NEG
Octyltriethoxysilane	NEG	NEG	OUT	OUT	NEG
Corticosterone	NEG	NEG	NEG	NEG	NEG

Results

- VEGA and Danish → QSAR tools - similar results;
- Endocrine Disruptome and Autodock → Molecular docking tools - similar results;


POS: Positive; NEG: Negative; OUT: Out-of-domain / No predictions made.

Results

Table 3. Agreement percentages (%) between OECD proficiency substances and *in silico* predictions

Parameters	VEGA QSAR	Danish QSAR	Endocrine Disruptome	AutoDock
Coverage	95,00	90,00	95,00	100,00
Out-of-domain / No predictions made	5,00	10,00	5,00	0,00
Correct predictions	95,00	90,00	65,00	80,00
Sensitivity	100,00	100,00	64,28	78,57
Specificity	100,00	100,00	80,00	83,33

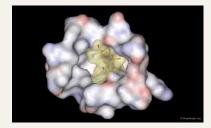
The average of sensitivity and specificity, indicating a models performance across both positive and negative substances

GRUPO BOTICÁRIO ASCCT-ESTIV Award Winners Webinar Series

Conclusions

In silico approaches

Fast and cost-effective alternative to animal testing


Estrogen Receptor Binding

QSAR tools performed well

+

Bridging the Gap

This results can complement *in vitro* and literature data, and offer valuable prescreening for new substances with endocrine-disrupting potential

Endocrine Disruptor Knowledge Base (EDKB)

IDA

Endocrine Disruptor Lists

Future Directions

01 New training set

03

- Estrogen, Androgen and Thyroid receptors
- Identify a combination of methodologies or softwares

Select substances commonly used in cosmetic products

- To screen a larger number of substances using databases;
- Due to the complexity of the endocrine system, it is important to evaluate differents receptors;
- Maximize performance in screening new substances;
- To assess the performance of the models within this specific chemical space.

Endocrine disruptor assessment list

References

- OECD (2018), Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption, OECD Series on Testing and Assessment, No. 150, OECD Publishing, Paris, https://doi.org/10.1787/9789264304741-en.
- Jacobs MN. In silico tools to aid risk assessment of endocrine disrupting chemicals. Toxicology. 2004 Dec 1;205(1):43–53; Hemmerich J, Ecker GF. In silico toxicology: From structure–activity relationships towards deep learning and adverse outcome pathways. WIREs Computational Molecular Science. 2020;10(4):e1475.
- Nicolopoulou-Stamati P, Hens L, Sasco AJ. Cosmetics as endocrine disruptors: are they a health risk? Rev Endocr Metab Disord. 2015 Dec 1;16(4):373–83.
- Shanle EK, Xu W. Endocrine Disrupting Chemicals Targeting Estrogen Receptor Signaling: Identification and Mechanisms of Action. Chem Res Toxicol. 2011 Jan 14;24(1):6–19.
- Kolšek K, Mavri J, Sollner Dolenc M, Gobec S, Turk S. Endocrine Disruptome—An Open Source Prediction Tool for Assessing Endocrine Disruption Potential through Nuclear Receptor Binding. J Chem Inf Model. 2014 Apr 28;54(4):1254–67.
- National Institutes of Health (NIH). Endocrine Disruptors. Available from: https://www.niehs.nih.gov/health/topics/agents/endocrine.

Thank you for listening

Acknowledgement

- American Society for Celular and Computational Toxicology (ASCCT);
- Andrezza Canavez Grupo Boticário;
- Desiree Schuck, PhD Grupo Boticário;
- Tugstênio Souza, PhD Grupo Boticário;
- Anax Oliveira, PhD Aima Toxicology;

Contacts

- https://www.linkedin.com/in/gabrielapradocorrea/
- gabriela.correa@grupoboticario.com.br

American Society for Cellular and Computational Toxicology

Safety Assessment Management

3RS Integrating 3 Worlds Human, Animal and Environmental Health

August 31 - September 4, 2025 Rio de Janeiro, Brazil