

Evaluation of physiological repeated exposure of aluminum in a 3D intestinal tissue model

Giulia De Negri Atanasio ASCCT-ESTIV Award Winners Series 2024

Evaluation of physiological repeated exposure of aluminum in a 3D intestinal tissue model

Aluminum is the third element present in the Earth crust. Aluminum is a versatile metal found in several consumer products, from makeup and skin care to food packaging and drug formulations

Due to this large application is important **to investigate the impact** on the human health and the possible implications

Inhalation

Aluminum particles in the air can be inhaled and contribute to absorption into the body.

Injection

Pharmaceuticals drugs can contain aluminum salt used as adjuvant and additives

Contact

Aluminum in cosmetics can be absorbed through the skin. Many cosmetics such as lipstick and antipespirants contain aluminum, which is used for its properties

Absorption

Typically, from the 0,1-1% of ingested aluminum is absorbed by the intestine.

Aluminium can be absorbed not only from oral pharmaceuticals but also from solid food and drinking water. Naturally present: i.e. vegetables, cereal

Aluminum in food

Leached by packaging (foil wrap, cans) or cookware (pans)

Intentionally

used as

food additives

26.9815385

Effect on the Nervous System

Grð **Kidney Function** and **Kidney Diseases**

Aim of the work

Repeated Exposure of Aluminum and investigate the consequences of repeated aluminum exposure on the structural and functional integrity of 3D intestinal tissue.

3D tissue model

Complexity

3D intestinal tissue models capture the multi-layered structure and dynamic environment of the human gut, offering a more realistic platform for studying aluminum absorption and toxicity.

3D tissue model

Advantages

These advanced models allow researchers to investigate physiological responses, such as barrier function and nutrient transport, in a controlled and reproducible manner.

3D tissue model

Applications

3D intestinal models can be utilized to evaluate the impact of repeated aluminum exposure on intestinal health and to elucidate the underlying mechanisms of aluminum-induced toxicity.

EXPERIMENTAL PLAN

TEER (Transepithelial-Electrical Resistance)

ICP (Inductively Coupled Plasma)

Gene expression

Histological section (hematoxylin-eosin)

TEM (transmission electron microscopy)

TEER (Transepithelial-Electrical Resistance)

TEER (Transepithelial-Electrical Resistance)

Gene expression

CLDN **** **** *** Relative mRNA expression 2.0-1.5 1.0 _ 0.5-0.0 0 ppm 5 ppm 20 ppm 50 ppm Treatments

Histological section

TEM

Microvilli height

CONCLUSION

- The results of this study suggest that the repeated exposure to Al³⁺ at the tested concentrations **could lead detrimental but not destructive** effects on the 3D intestinal tissue model only at the higher concentration.
- Other research are ongoing to explore any potential long-term effects and to understand the possible implications

Acknowledgements

- Prof. Elena Grasselli
- Prof. Katia Cortese
- Prof. Sara Ferrando
- Giorgia Allaria
- Lorenzo Dondero
- Erica Lertora
- Francesca Rispo
- Francesca Tardanico

- Dr. Silvia Letasiova
- Dr. Jan Markus

- Dr. Matteo Zanotti-Russo
- Dr. Federica Robino

#