

Advancing Translational Application and Acceptance of the Human Thyroid Microtissue Assay

Chad Deisenroth, Ph.D. Center for Computational Toxicology and Exposure U.S. EPA deisenroth.chad@epa.gov

ASCCT-ESTIV Webinar: Progress in in vitro Thyroid Disruption Approaches July 16, 2024

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. There are no conflicts to declare.

Office of Research and Development Center for Computational Toxicology and Exposure

Adoption of New Approach Methods in the Endocrine Disruptor Screening Program

- The EDSP evaluates chemical effects on estrogen, androgen, and thyroid endocrine pathways.
- The validated Estrogen Receptor (ER) and Androgen Receptor (AR) pathway models may be used as an alternative to the Tier 1 screening assays.
- Continue development of a Thyroid Pathway Framework that includes *in vitro* assays for thyroid-relevant targets to produce an integrated prediction model.

Endocrine Toxicology: Why Do We Care About Thyroid?

- Thyroid hormones are essential for normal growth, development, cell differentiation, and energy homeostasis.
- Thyroid dysfunction is characterized by under- (hypothyroidism) or over-(hyperthyroidism) activity of the gland, impacting:
 - Neurodevelopment and function
 - Cardiovascular function
 - Energy metabolism
 - Cancer
- Environmental chemical exposures are associated with thyroid dysfunction.

Thyroid HTS Assays Do Not Directly Measure Thyroid Hormone Synthesis

Sites of Interference for Thyroid Disrupting Chemicals

Thyroid AOP Network

Thyroid MIE	Assay	Environmental Chemicals Screened	Active Chemicals	% Active	Reference
TSHR	Engineered Cell Line	7871	825	10	TCPL: TOX21_TSHR_Agonist, TOX21_TSHR_Antagonist
ТРО	Microsomal Enzyme	1074	150	14	K. Paul Friedman et al, ToxSci, 151(1), 2016, 160-180
NIS	Engineered Cell Line	293	137	47	J. Wang et al, EnvironSciTechn, 52, 2018, 5417-5426
NIS	Engineered Cell Line	768	167	22	J. Wang et al, Environment International, 126, 2019, 377-386
DIO 1	Recombinant Enzyme	292	18	6	M. Hornung et al, ToxSci, 162(2), 2018, 570–581
DIO 1	Recombinant Enzyme	1819	139	8	J. Olker et al, ToxSci, 168(2), 2019, 430-442
IYD	Recombinant Enzyme	1825	148	8	J. Olker et al, Toxicol In Vitro. 2021 Mar;71:105073.

Goal: Establish a validated test method for human thyroid hormone disruption.

Challenges with *In Vitro* Thyroid Testing: Cell Type and Architecture are Critical Determinants for Hormone Synthesis

Cell Type

- No primary or thyroid cell lines, of any species, demonstrate appreciable capacity for thyroid hormone synthesis in 2D models.
- Primary thyrocytes lose essential functions when cultured in conventional monolayer systems.

Cell Architecture

• Follicular morphology is a critical feature for retaining hormone synthesis dynamics.

Human Thyroid Microtissue Model: Proof of Concept

Developed a medium-throughput organotypic screening assay comprised of reconstructed human thyroid microtissues to quantitatively evaluate the disruptive effects of chemicals on thyroid hormone synthesis and secretion.

Validation, Qualification, and Regulatory Acceptance of New Approach Methodologies A Report of the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Validation Workgroup

- Guided by underlying principles of OECD GD 34, a framework to validate NAMs that are fit-for-purpose, reliable, and relevant to the species of interest.
- Intended to be a modular and flexible approach to test method validation that accommodates shifting trends in assay technologies and applications.
- Reduce the time and cost of validation to accelerate regulatory adoption and implementation.

Standardizing Organotypic Assays is Challenging

"I want an assay that predicts

a range of human responses"

"I want an assay that is reproducible"

How do technical precision and biological variability co-exist?

Goal: Establish minimum acceptance criteria for donor qualification and quantitative performance guidelines to increase confidence in the 'true' biological performance variability.

Standardization of the Human Thyroid Microtissue Assay

SOT Society of Toxicology academic.oup.com/toxsci

Toxicological Sciences, 2024, 1–19

https://doi.org/10.1093/toxsci/kfae014 Advance Access Publication Date: February 4, 2024 Research article

Technical evaluation and standardization of the human thyroid microtissue assay

Briana Foley, ¹ Kristen Hopperstad, ¹ John Gamble, ^{1,2} Scott G. Lynn, ³ Russell S. Thomas (0, ¹ Chad Deisenroth (0^{1,*}

Objectives: 1) Define technical parameters for donor procurement, thyrocyte qualification, and assay performance,2) Set benchmark ranges for reference chemical responses.

Donors32Age34 (17-61)SexMale (24), Female (8)RaceCaucasian (25), African American (7)BMI28 (18-37)

Donor Cohort Demographic Summary

- Microtissue Morphology
- Microtissue Biomass
- TSH Receptor Sensitivity
- Thyroglobulin Synthesis
- Hormone Synthesis
- Reference Chemical Response

Human Thyroid Microtissue Assay v2.0

Protocol modified to enhance performance and improve durability for method transfer.

Microtissue Morphology and Biomass

- Donors exhibit a wide range of hormonogenic competence.
- No clear relationship between microtissue size or morphology and hormone synthesis.

Donor Qualification – Setting Minimum Acceptance Criteria for Hormonogenic Competence

Variability in microtissue performance evaluated.

Donor thyrocyte qualification

Bin Cente

3.5

Bin Center

Tx-2 99% CIBiomass (RLU)Thyroglobulin (ng/ml)T4 (ng/ml)T3 (ng/ml)T4/T3 ratio (ng/mMedian230 19734053.034.940.57Lower confidence limit189 32119611.072.020.45Criteria≥180 000≥1900≥1.0≥2.0≥0.4PriorityOptionalOptionalRequiredRecommendedOptional							
Median230 1973405 3.03 4.94 0.57 Lower confidence limit189 3211961 1.07 2.02 0.45 Criteria $\geq 180 000$ ≥ 1900 ≥ 1.0 ≥ 2.0 ≥ 0.4 PriorityOptionalOptionalRequiredRecommendedOptional	Tx-2 99% CI	Biomass (RLU)	Thyroglobulin (ng/ml)	T4 (ng/ml)	T3 (ng/ml)	T4/T3 ratio (ng/ml)	
	Median Lower confidence limit Criteria Priority	230 197 189 321 ≥180 000 Optional	3405 1961 ≥1900 Optional	3.03 1.07 ≥1.0 Required	4.94 2.02 ≥2.0 Recommended	0.57 0.45 ≥0.4 Optional	

Lower confidence limits used to establish minimum donor acceptance criteria.

- Thyroxine (T4) vs Triiodothyronine (T3) exhibit the cleanest binning for donor-based performance.
- Data suggests up to 25% of donors would not qualify for use in the assay.

nental Protection

Assay Technical Performance Metrics

		Total cohort (N $=$ 32)		Qualified cohort (N = 24)	
Solvent (DMSO)	Performance metrics	T4 median (±MAD)	T4 range	T4 median (±MAD)	T4 range
0%	Dynamic range (rS/B) Precision (rCV) Screening quality	7.0 (±8.7) 8.3 (±6.8) 0.56 (±0.42)	0.5–211.8 1.2–51.7 –823.94–0.94	9.5 (±6.3) 7.9 (±6.8) 0.64 (±0.35)	3.9–211.8 1.2–21.4 –0.57–0.94
0.5%	Dynamic range (rS/B) Precision (rCV) Screening quality (rZ'-factor)	9.9 (±8.5) 11.8 (±6.1) 0.53 (±0.37)	0.5–508.8 0.6–60.3 –17.50–0.94	11.6 (±7.0) 10.6 (±5.4) 0.61 (±0.25)	2.6–508.8 0.6–24.0 0.00–0.94

Technical reproducibility is more strongly supported in the variable-donor platform when using qualified donors.

Reference Chemical Benchmarks for Proficiency Testing

20

(ng/ml)

10

5

0

300-200-T4 (% DMSO) 100 0 R²=0.89 -10 -6 -8 Concentration (log₁₀ M) N=24

Methimazole

	Proficiency testing benchmarks			
Reference chemical	IC ₁₀ (95% CI)	IC ₅₀ (95% CI)	Units	
Methimazole 5-Propyl-2-thiouracil Sodium perchlorate Methomyl	53 (29–94) 76 (46–115) 4 (2–6) NA	234 (190–277) 363 (311–422) 18 (12–29) NA	nM nM μM NA	

Β

Donor qualification improves data modeling and decreases uncertainty in chemical potency determination.

Population T4 (Mean)

20

Population EC₁₀ (95% CI) ο

10

Performance Parameters Influenced by Donor Demographics

- The contribution of donor age, sex, race, and BMI to in vitro performance evaluated.
- Donor age and BMI influence microtissue formation, sensitivity to TSH, and thyroid hormone synthesis.

0.0

0.5

Advances AOP-based Thyroid Testing - The human thyroid microtissue assay fills an important 'key event' gap in the context of the thyroid adverse outcome pathway network by enabling functional testing of potential thyroid toxicants on hormone synthesis.

Standardizes Primary Human Thyrocyte Technology - The establishment of guidelines for donor procurement and primary thyrocyte qualification move the technology toward standardization in a manner that directly addresses cell quality as a key vulnerability with the use of organotypic model systems.

Sets Minimum Performance Guidelines - Establishing minimum performance parameters introduces flexibility into the assay to enable evaluation of a range of human responses.

Readiness for Method Transfer - The benchmark reference chemical potency ranges establish quantitative parameters for evaluating proficiency of method transfer and reproducibility.

Inter-laboratory Validation of the Human Thyroid Microtissue Assay

Goal: To structure and support a preliminary assessment of the test method reliability and relevance.

Objectives

- 1. Test method standardization.
- 2. Test method transfer, training and intra-laboratory model performance evaluation.
- 3. Limited inter-laboratory reference chemical testing and assay performance evaluation.

International Thyroid Testing Landscape

Block #	Description
1	Central regulation (HPT axis).
2	Thyroid Hormone (TH) synthesis.
3	Binding and transport in serum.
4	Metabolism and excretion (by hepatic deiodinases, glucuronidation and sulfation).
5	Local cellular concentrations (TH selective membrane transporters e.g. monocarboxylate transporter 8 (MCT8)).
6	Cellular responses (activation of specific nuclear receptors TRa and TR β).
7	Relevant short term assays integrating multiple MoAs.
8	Integrative cellular assays

JRC TECHNICAL REPORT

Validation of a battery of mechanistic methods relevant for the detection of chemicals that can disrupt the thyroid hormone system

Bernasconi C., Langezaal I., Bartnicka J., Asturiol D., Bowe G., Coecke S., Kienzler A., Liska R., Milcamps A., Munoz Pineiro A., Pistollato F., Whelan M., 2023

EURL ECVAM Validation of Thyroid Test Methods

Working Party of the National Coordinators to the Test Guidelines Programme (WNT)

Thyroid Disruption Methods Expert Group

Ed LeCluyse Eda Rogers Jingsong Chen Sharon Presnell Paul Gallant Lindsay Whaley

Valerie Soldatow

Contact deisenroth.chad@epa.gov Helen Tinwell Julia Kuehnlenz Frederic Schorsch Olivier Blanck

Bayer CropScience

A BAYER

E R

UNITED STATES

Advancing Alternatives to Animal Testing

Briana Foley Kristen Hopperstad John Gamble Scott Lynn **Rusty Thomas**

Nicole Kleinstreuer Helena Hogberg-Durdock Agnes Karmaus Dave Allen Michaela Blaylock **Emily Reinke** Bridgett Hill

Jessica LaRocca Enrica Bianchi Mercedes Biven Wei Chen

