Human biomonitoring for the identification of real-life mixtures

Mirjam Luijten
Mirjam.Luijten@rivm.nl
Chemical mixtures: the issue

- People are continuously exposed to a multitude of substances from different environmental sources, via different routes and duration of exposure.

- Exposure to chemical mixtures may increase health risks of individual substances due to potential combination effects.

- Due to the large number of chemicals present in the environment, mixture risk assessment is complex and poses a number of challenges for scientists, risk assessors and managers.
Human biomonitoring

- Within HBM4EU we aimed to achieve a better understanding of the exposure to chemical mixtures and the resulting health effects in Europe through human biomonitoring

- Therefore, we
 - determined **real-life mixtures** by making use of existing data from studies across Europe
 - generated new data on **pesticide exposure** using suspect screening analyses
 - (developed an advanced workflow for assessing mixture health effects)
Network analysis in HBM

- For the identification of real-life mixtures we evaluated existing HBM data using correlation network analysis.

- Multiple exposure biomarkers are measured in the same individuals in HBM studies, but correlation patterns among biomarkers have been so far largely ignored.

- There are several ways to present correlation information, but the interpretation is often difficult.

- Networks provide a graphical method to represent groups or communities in the data, which has been used widely in other research fields.

Network analysis in HBM4EU

- Proof of principle was developed on simulated data, and subsequently tested on FLEHS data set.

- Network analysis was applied to datasets from four different countries across Europe, i.e. Germany, Belgium, Spain and the Czech Republic.

- The four studies are quite diverse, both in terms of the exposure biomarkers measured and in study design and population groups involved.
Network analysis in HBM4EU - Example

- Example shown for data set from GerES V subsample (morning urine, participants age 3-17 years)

- Network analysis reveals ‘communities’: groups of correlated exposure biomarkers, reflecting co-occurrence of chemicals

- Observed communities include a) PAHs; b) acrylamide, benzene, aprotic solvents and methylisothiazolinones; c) parabens and lysmeral

- Remarkably, some substances are not part of a community, e.g. BPA and mercury

From: Rodriguez Martin et al, 2023. DOI: 10.3390/toxics11030204
Network analysis: conclusions

- Network analysis of existing human biomonitoring studies reveal that **combined exposures** to chemical substances are **common** and occur in all population groups.

- Identified communities consist of substances from **different chemical classes** (which may be regulated under different regulatory frameworks).

- Integration with toxicological and concentration data is crucial for further interpretation: which communities are of higher concern, i.e. have a combined body burden that is of **potential health concern**?
Network modeling: toxicity weighing

- To address this issue, we applied the Hazard Index (HI) approach.

- A database of HBM - health-based guidance values (HBM-HBGVs) and equivalents was developed and used for deriving Hazard Quotients (HQ) for each substance:

 \[
 HQ_i = C_i / HBM-HBGV_i
 \]

- The resulting HQ values were used for deriving the Hazard Index (HI) across substances:

 \[
 HI = \sum_{i=1}^{n} HQ_i
 \]
Network modeling: toxicity weighing

Network GerES V (subsample, adjusted and controlled for crt, n = 515)

All substances

Phthalates

From: Loh et al, 2023. DOI: 10.3390/toxics11050408
Network analysis: conclusions

- Network analysis of existing human biomonitoring studies reveal that combined exposures to chemical substances are common and occur in all population groups.

- Identified communities consist of substances from different chemical classes (which may be regulated under different regulatory frameworks).

- Integration with toxicological and concentration data is crucial for further interpretation: toxicity weighting can be applied at the level of identified communities, but its effective use is limited by the lack of HBM-HBGVs.
Human biomonitoring

- Within HBM4EU we aimed to achieve a better understanding of the exposure to chemical mixtures as well as the resulting health effects in Europe through human biomonitoring

- Therefore, we
 - determined **real-life mixtures** by making use of existing data from studies across Europe
 - generated new data on **pesticide exposure** using suspect screening analyses
 - (developed an advanced workflow for assessing mixture health effects)
Survey on PEstiCIde Mixtures in Europe
SPECIMEn study

Focusing on pesticides, HBM4EU aimed:

- To generate **new exposure data** across Europe on a **broad combination of pesticides**
- To assess **possible local contributions**

Specific research questions were as follows:

1. Which combinations of pesticides are most commonly detected?
2. Can we identify **hotspots**? Do people living close to pesticide application sites have higher exposure levels compared to people living further away?
3. Do these combinations differ **between seasons** (spraying *versus* non-spraying)?
4. Do these combinations differ **between age groups and study populations** in different countries?
SPECIMEn study

Non-spraying season
Dec 2019 – Feb 2020

Spraying season
May 2020 – Aug 2020

50 hotspot households
50 control households

50 urine samples child
50 urine samples parent

Hotspot: <250 meters from agricultural areas
SPECIMEn results

- Urine samples were subjected to a consolidated and harmonized methodological workflow for suspect screening (Jean-Philippe Antignac; INRAE)

- In total 95 pesticide-related markers were identified; of these, nearly half was identified with a high level of confidence.

- Pesticide-related markers identified with a high level of confidence relate to 29 parent compounds. Examples include acetamiprid, chlorpropham, boscalid, and clothianidin.
SPECIMEn results

- Detection frequencies for parent pesticides varied substantially between countries.

- Many of the pesticides identified showed differences in detection rates when comparing hotspot areas versus control areas, samples collected in summer versus winter, and children versus adults; however, differences were in many cases not significant. The significant differences were not consistent across countries.

SPECIMEn: Conclusions

- Using suspect screening analyses, HBM4EU generated valuable exposure data across Europe on a broad combination of pesticides.

- We did not observe consistent strong contributions from agricultural application to detection rates in hotspots or in spraying season.

- Suspect screening is a valuable approach to get a broader overview and a semi-quantitative evaluation of substance exposures across the EU. This allows prioritization of substances for targeted analysis and comparison of the suspect screening data with reported substance usage.

- Mixture risk assessment would strongly benefit from a strategy for the measurement of multiple exposure and effect biomarkers in the same subject in HBM programmes. This requires the development of an inclusive HBM/exposome infrastructure in Europe.
Mixtures and HBM4EU: Lessons learnt

- Topics addressed:
 - Network analyses to identify real-life mixtures
 - Suspect screening analyses
 - Health effects due to exposure to mixtures

- HBM4EU outcomes were used for drafting conclusions and recommendations, which have been discussed in a stakeholder workshop

- Final result: 14 recommendations for Mixture Risk Assessment
Useful links

Publications
- Network analysis
- Suspect screening

Webinars
- https://www.hbm4eu.eu/result/events/trainings/
Especially to all partners contributing to mixture activities in HBM4EU, as well as all HBM participants.