

Universiteit Utrecht

Funded by the Horizon 2020 Framework Programme of the European Union

National Institute for Public Health and the Environment *Ministry of Health, Welfare and Sport*

Computational modelling of neural tube closure defects ESTIV webinar 28-04-2023

Job Berkhout

The neural tube closure

- > Precursor of the brain and the central nervous system
- > Early event in pregnancy
 - End of 3rd week
- > Complex process that involves various cellular events

Neural tube closure

> Complex process, target for chemical disturbance

Failure of closure

- > Neural tube closure defects
- > Multiple variations

Failure of closure

- > Neural tube closure defects
- Multiple variations
- Among the most prevalent birth defects
 - Spina Bifida: 3.5/10.000 US
- > No test available for risk assessment
 - In vivo is not sufficient

Failure of closure

- > Neural tube closure defects
- Multiple variations
- Among the most prevalent birth defects
 - Spina Bifida: 3.5/10.000 US
- > No test available for risk assessment
 - In vivo is not sufficient
- > Develop a human relevant test strategy!

Test strategy for neural tube closure defects

- > 3R approach (Replacement, Reduction and Refinement)
 - Repeated dose toxicity
 - Focus on In vitro and In silico
- Rooted in human biology
 - Physiological maps
- > Building Ontologies
 - The whole system of biology on which a test strategy is based

To model somethi

- Strategies for toxicity testing
- Paris
- Travelling by train
- Depending on the ma
 - Wrong direction
 - Dead-end street
 - Never in time for the
- Better maps needed
- Ontologies

Ontologies

Normal physiology

From Ontology to test strategy

Key elements

AOPs

In silico model of neural tube closure Test battery Integration in silico test 1 test 4 Virtual test 2 Human test 5 **ADME Model** in silico Model test 3 test 6

safety

profile

Adopted from H. Heusinkveld

Computational modeling of neural tube closure

- > Cellular-Potts in Compucell 3D
- > Agent-based

Computational modeling of neural tube closure

- > Cellular-Potts in Compucell 3D
- > Agent-based
- > Start with a 2D model
- > First include relevant cell behaviors
- Implement biologically relevant triggers afterwards

The CC3D model reflects the progressive closing neural tube

Caudal

A computational model of neural tube closure build in CC3D

Components of the current neural tube closure model

- > Spatial organization based on human physiology
- Apical constriction induced by relevant protein gradients
 - For DLHP and MHP formation
- Somite formation

Components of the current neural tube closure model

- > Spatial organization based on human physiology
- Apical constriction induced by relevant protein gradients
 - For DLHP and MHP formation
- Somite formation

Spatial organization of the model

Spatial organization of the model

Virtual human embryo Carnie stage 10

Spatial organization of the model

Virtual human embryo Carnie stage 10

Mouse spinal NTC Nikolopoulou et al 2017

Components of the current neural tube closure model

- > Spatial organization based on human physiology
- Apical constriction induced by relevant protein gradients
 - For DLHP and MHP formation
- Somite formation

Apical constriction

- > Critical for Neural tube closure
- > Wedge shaped cells

Apical constriction

Apical constriction

- Mediated by BMP and SHH
 - − BMP → Apical constriction
 - SHH Apical constriction
- > Requires intermediate levels of BMP
 - Inhibited by high BMP

Apical constriction in the NTC CC3D model DLHP

- > Reduce apical cell volume, increase basal cell volume
- > "Springs" Between cells to simulate contractile forces
 - actomyosin machinery

Components of the current neural tube closure model

- > Spatial organization based on human physiology
- Apical constriction induced by relevant protein gradients
 - For DLHP and MHP formation
- > Somite formation

Somite formation

Chick somite formation Martins et al, 2009

Somite formation

- > ECM is formed between mesodermal cells
- > Cell differentiation to somite cell
 - Different properties

Somite formation

- > Paraxial mesoderm cell shapes comparable to biology
- > Somite cells in simplified structure

Chick somite formation Martins et al, 2009

In silico prediction of Neural tube closure defects

Synthetic dose-response BMP inhibition/activation

Disruption floor plate formation

Normal

Disrupted

To conclude

- > Introduced ontologies
- The first steps towards a biologically relevant computational model of human neural tube closure
- The Computational model showed adverse outcomes comparable to in vivo studies

Acknowledgements

My Promotion team:

- > Dr. Harm Heusinkveld
- > Prof. Aldert Piersma
- > Prof. Juliette Legler

External advisors:

- > Dr. Tom Knudsen
- > Dr. Richard Spencer
- > Prof James Glazier
- > Dr. Julio Belmonte

Universiteit Utrecht

Funded by the Horizon 2020 Framework Programme of the European Union

The ONTOX team

The end

Contact me if you want to know more

Job.Berkhout@rivm.nl

jobberkhout96@gmail.com

An ontology for neural tube closure

Step-by step

- Charting physiology
- Determining key phenotypes
- Build computational model
- In vitro/in silico test strategy

Adopted from H. Heusinkveld

Charting physiology

CellDesigner

Systems Biology Markup Language (SBML)

First version: manual

Physiological maps 2.0

- University of Liège
 - Genes, proteins, and RNA node names were standardized using the HGNC-approved symbol.
 - Chemicals (compounds) were annotated with the respective ChEBI ID.
 - Phenotypes with the Gene Ontology (GO) ID.

Switch to Minerva

- Online tool
- Editable -> ease of correction

Overview model > Main map > Submaps

Physiological map 2.0

Physiological map 2.0

Intermediate BMP is needed for DLHP formation

Apical constriction in the NTC CC3D model MHP

- > Reduce apical cell volume, increase basal cell volume
- > Reduce apical fpp link target distance
 - increase basal link target distance to a lesser extend
- > Anchor multiple points to prevent basal cell elongation

