

Promoting Reusable and Open Methods

Sofia Batista Leite

European Comission Joint Reasearch Centre
Alternative Methods and Chemical Safety Unit

Pierre Deceuninck (EC - JRC)
Tracey Weissgerber (QUEST Center for Responsible Research)
Bernd Pulverer (Editor in chief of EMBO publishers)
Jean François Dechamp (EC DG RTD)
Annamaria Carusi (InterchangeResearch)
David Pamies (University of Lausanne)

Methods Are Frequently Lost

Looking for protocol in 1997 paper: "as described in (x) et al '96'. Finds ' 96 paper: "as described in (x) ' 87 ." Finds '87 paper: Paywall.

- Tweet übersetzen

21:20-1. Nov. 2017 aus 대한민국 포항시

Daniel Gonzales

@dgonzales1990
2017: "Devices were fabricated as previously described [ref 8]"
[ref 8] 2015: "Devices were fabricated as previously described [ref 4]"
[ref 4] 2013: "Devices were fabricated as previously described [ref 2]"
[ref 2] 2009: "Devices were fabricated with conventional methods"
(1) Tweet übersetzen

13:16-17. Jan. 2018

230 Retweets $\mathbf{7 9 8}$ „Gefällt mir"-Angaben
4040 90

The European Union Reference Laboratory for alternatives to animal testing

- Research
- Validation
- Dissemination
- Promotion

Promoting of non-guideline methods

Methods \& Protocols in Peer Review Publications

working with the community

Conclusions of our research...

1. Majority of publications do not value the methods section enough

${ }^{6}$ Half of top cancer studies fail high${ }_{84}^{64}$ profile reproducibility effort
(Barriers to reproducing preclinical results included unhelpful author communication, _ but critics argue that one-time replication attempts don't tell the whole story.

Vaque experimental protocols was one barrier to replication that researchers encountered. Credit: Patrick Hertzog/AFP/Getty

Researchers describe artifacts that could have misled authors and prompted sensational reprogramming claims

nakes possible to

Plan to replicate 50 high-impact cancer papers shrinks to just 18

Science

REPRODUCIBILITY
PROJECT
Cancer Biology

2\%

70%
of experiments required asking for key reagents

32\%

of experiments the original authors were not helpful (or unresponsive)

69\%

of experiments needing a key reagent original authors were willing to share

41\%

of experiments the original authors were very helpful

naturephysics

Explore content \vee About the journal \vee Publish with us \vee Finda
$\underline{\text { nature }}>\underline{\text { nature } p h y s i c s}>$ perspectives $>$ article

Perspective | Open Access | Published: 15 November 2018

Open is not enough

WHY sharing Protocols and Methods?

Transparency

Advance in Science

 Reproducibility is CORE to science

Translation of Science (impact citizens)

Conclusions of our research...

2. (Part of the) Community is aware of this and some initiatives trying to tackle it!

Community Work

Platform
Managers

NINDS workshop - 2012

PERSPECTIVE

A call for transparent reporting to optimize the predictive value of preclinical research

Story C. Landis ${ }^{1}$, Susan G. Amara ${ }^{2}$, Khusru Asadullah ${ }^{3}$, Chris P. Austin ${ }^{4}$, Robi Blumenstein ${ }^{5}$, Eileen W. Bradley ${ }^{6}$, Ronald G. Crystal ${ }^{7}$, Robert B. Darnell ${ }^{8}$, Robert J. Ferrante ${ }^{9}$, Howard Fillit ${ }^{10}$, Robert Finkelstein ${ }^{1}$, Marc Fisher ${ }^{11}$, Howard E. Gendelman ${ }^{12}$, Robert M. Golub ${ }^{13}$, John L. Goudreau ${ }^{14}$, Robert A. Gross ${ }^{15}$, Amelie K. Gubitz ${ }^{1}$, Sharon E. Hesterlee ${ }^{16}$, David W. Howells ${ }^{17}$, John Huguenard ${ }^{18}$, Katrina Kelner ${ }^{19}$, Walter Koroshetz ${ }^{1}$, Dimitri Krainc ${ }^{20}$, Stanley E. Lazic ${ }^{21}$, Michael S. Levine ${ }^{22}$, Malcolm R. Macleod ${ }^{23}$, John M. McCall ${ }^{24}$, Richard T. Moxley III ${ }^{25}$, Kalyani Narasimhan ${ }^{26}$, Linda J. Noble ${ }^{27}$, Steve Perrin ${ }^{28}$, John D. Porter ${ }^{1}$, Oswald Steward ${ }^{29}$, Ellis Unger ${ }^{30}$, Ursula Utz ${ }^{1}$ \& Shai D. Silberberg ${ }^{1}$

The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.

Methods Matter for Open \& Reproducible Research

IF Cookies == Data

Analysis of

Size / Thickness / Texture / Flavour etc.
Can *ONLY* be interpreted in the context of the method tweaks
too much flour / incorrect ingredient
/
amount of butter / bake time etc.)

These were all made by tweaking the same recipe. Rachel Askinasi/Insider
(Screenshot from https://www.insider.com/chocolate-chip-cookies-common-baking-mistakes-photos)

Cell Press launched STAR Protocols in 2019 to fulfill this need

User perspective

As a user, I want to...

- Find and choose the right method
- Reproduce a method step-by-step
- Troubleshoot
- Get expert advice

Benefits to authors

- Increase the reach and use of the original research article
- Gain another publication in an open access, indexed and peer reviewed journal
- Author template simplifies the process of converting lab protocols to a STAR Protocol
- Innovative, timely peer review and publication process
- Quick turnaround time (50 days from submission to accept)
- Improve lab record keeping to preserve institutional knowledge
- Contribute to open science and help encourage reproducibility

Study reporting checklist, based on GIVIMP

\rightarrow Used GIVIMP guidance and SciRap tool to establish the following reporting checklist:

Apparatus, materials and reagents

1. The apparatus was described
2. The limit of detection or limit of quantitation of the apparatus was indicated.
3. The materials and reagents were described.
4. The culture dimensions were described (mm^{2} or m).
5. The use of animal-derived materials or reagents (e.g. Trypsin, antibodies, collagen, Matrigel etc.) was described.
6. The use of fully animal-free materials and reagents was described.

Test item treatment

1. The test item concentrations/dose levels were stated.
2. Biological fluid characterisation was described quantification of proteins and cellstissue present).
3. Binding to biological fluid material was described
4. Binding to culture material was described.
5. Test system number, density, dimension, quantity used during treatment was described.
6. The duration of treatment was stated.
7. The number of replicates per concentration/dose was stated.
8. The number of times the experiment was repeated was stated ${ }^{1}$ (independent biological runs).

Data collection and analysis

1. The experimental design and relevant acceptance criteria were described.
2. The experimental layout, e.g. plate layuot was described
3. The time points for data collection were stated.
4. It was sated that the effect of the test tem on cytotoxicity was measured
5. Other observations that may impact the results (e.g. autofluorescence, absorbance by the test system) are reported.
6. Details on calculation of results were given.
7. Al results were clearly presented, including negative and failed runs
8. The statistical methods \& software used were described.
9. Aclear description on how to interpret read outs and criteria for decision-making were given. OR Evaluation/data interpretation criteria were given.

Funding and competing interests

1. The funding sources for the study were stated.
2. Any competing interests were disclosed or it was explicity stated that the authors did not have any competing interests.
3. ${ }^{2}$ mivation on the overall availability of the IPR protected components, including whether they are commercially available or require a Materia Transfer Agreement or other licensing agreements, was given.

Methods \&
Protocols

Importance in
 Peer-review

Affiliation
eLife
InterChange Research
EMBO
Springer Nature
Bio-protocol and Harvard Medical School
University Lausanne
F1000
Cell Press
protocols.io
Bio-protocol
EC-JRC
Science Europe
EC-RTD
PLOS
FRESCI
NC3Rs
EC-JRC
EC-JRC
EC-JRC
QUEST Center for
Responsible Research
Bio-protocol and MIT

Andy COLLINGS
Annamaria CARUSI
Bernd PULVERER
Bronwen DEKKER
Caroline SHAMU
David PAMIES
David SADLER
Elisa De RANIERI
Emma GANLEY
Fanglian HE Ingrid LANGEZAAL
James MORRIS Jean-Francois DECHAMP

Marcel LaFLAMME
Marco STRACCIA
Matthew BROOKE Monica PIERGIOVANNI Pierre DECEUNINCK Sofia BATISTA LEITE

Tracey WISSGERBER
Vivian SIEGEL

Detailed, Clear, Complete, Transferable, Reusable, Dynamic, Transparent, Reliable, Reproducible and Open

Recommendatinnc tn Kav Grounc

AIII

1. Increasing awareness
2. HOW to achieve good methods and protocols reporting
3. Developing better means and tools to share and publish protocols
4. Increasing funding and Investing in education on good reporting

Researchers \& their Institutions

Funding

 Agencies
RECOMMENDATIONS

Researchers \& their Institutions
\checkmark Embed in the culture
\checkmark Use of protocols
\checkmark Relevant guidelines
x Shortcut citations
\checkmark Method section linked to dynamic protocols
\checkmark Training
\checkmark Reward: cv, Prizes, awards..
\checkmark Embed on PhD thesis structure

RECOMMENDATIONS

for

Editors \& Publishers

\checkmark Promote access to detailed protocols
\checkmark Ensure and allow enough detail - no word limit or copyright, include material reference
\checkmark Structured methods
\checkmark Link to protocols that are versioned, fork and not duplicate or supplementary
x Shortcut citations
\checkmark Update guides for authors and reviewers accordingly

RECOMMENDATIONS

for
Funding Agencies
\checkmark Support open protocols
\checkmark Request availability of study protocols
\checkmark Reward good practices
\checkmark Focus on Early Career researchers
\checkmark Fund dedicated actions and development of tools
\checkmark Fund training

WHY IS THIS RELEVANT FOR Non-ANIMAL METHODS?

Methods in the Regulatory arena

Regulatory Testing for Endocrine Disruptors; Need for Validated Methods and Integrated Approaches

Elise Grignard*, Kelly de Jesus and Philippe Hubert
PEPPER, Paris, France

Another aspect to take into account when considering the revision of the information requirements is the need of methods able to fulfil the three aspects of the criteria for the
 identification of EDs, as laid out in the Pesticides and Biocides Regulations, i.e., the

Identifying methods with a potential for validation and use in regulatory-relevant ED characterisation is a tricky issue for many reasons. For example, the published literature is mainly presenting toxicological properties of substances, and rarely describes methods in an extensive or transparent way. A list of data collection on methods was compiled by a group developing a case

Animal methods better covered for transparency

\checkmark Ethics
\checkmark Mandate by funding entities
\checkmark Guidelines enforced by journals
\checkmark Compulsory training
\checkmark More scrutinized at the facilities

Important to invest in the same type standards for non-animal methods

Commitment and Actions Document
Working in separate working groups

PRO-MaP

Identification of the problem and possible actions.

Engaging with Key players

Open the document to consultation/feedback from others

Improve Reporting of Protocols and Methods to

Increase Transparency

Increase Reproducibility
Increase trust in methods \& data

Advance in Science

Acknowledgments

Pre-workshop Consultations

Sandra CALDEIRA, EC-JRC

 Georgina HARRIS, Frontiers in PhysiologyThiago CARVALHO, Cold Spring Harbour Laure-Alix CLERBAUX, EC-JRC Evangelos DASKALOPOULOS, EC-JRC Francesca PISTOLATTO, EC-JRC Ivana CAMPIS, EC-JRC

PRO-MaPs

Bernd PULVERER Tracey WEISSGERBER Annamaria CARUSI Pierre DECEUNINCK David PAMIES Jean-Francois DECHAMP Emma GANLEY James MORRIS Andy COLLINGS Marcel LaFLAMME Bronwen DEKKER Marco STRACCIA Caroline SHAMU Matthew BROOKE
David SADLER
Elisa De RANIERI
Fanglian HE \qquad
Ingrid LANGEZAAL

Thank you

JRC SUMMER SCHOOL

ON NON-ANIMAL APPROACHES IN SCIENCE

Towards Sustainable Innovation

Sofia.BATISTA-LEITE@ec.europa.eu;
(5) @SofiaBLeite
in Sofia Batista Leite
ec.europa.eu/jrc
(5) @EU_ScienceHub

EU Science Hub Joint Research Centre
in Joint Research Centre

(yune EU Science Hub

