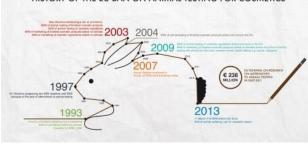
+ + + + + -

OODESQLABS + + we empower health care

+ + + + + +


+ + + + + +

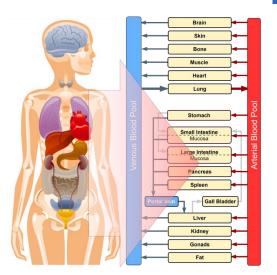
Guidance for increasing confidence in Physiologically Based Kinetic models ... are we ready for a regulatory change?

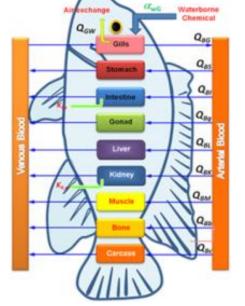
ASCCT- ESTIV Webinar - Alicia Paini, PhD, ERT

Premise

- Chemical Risk Assessment can and should be based on non-animal data
- This implies the need to use alternatives such as in vitro and in silico methods (New approach methodologies, NAMs)
- Especially to interpret and use *in vitro* toxicity data in combination with biokinetic data
- Biokinetic (ADME) data can be generated by *in silico* and *in vitro* models
- Mathematical modelling is the way to accurately integrate and use in vitro data for the design of experiments and extrapolate in vitro to in vivo for safety assessment
- Robust and reliable mathematical models are available

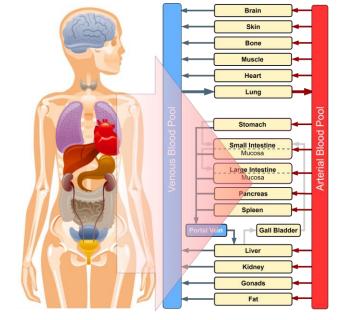
CONNECTING THE DOT'S FOR ANIMALS:


U.S. EPA to eliminate all mammal testing by 2035 By David Grimm | Sep. 10, 2019 , 6:00 PM


What kinds of models are in scope?

Physiologically based kinetic (PBK) model

Mathematical description of the body, simulating the xenobiotic distribution into the different organs.



Throughout this presentation the more general term PBK will be used. Noting that PBK, PBPK, PBBK and PBTK are synonyms.

Physiologically based pharmacokinetic (PBPK) is the most widely used term for kinetic models describing the absorption, distribution, metabolism and excretion of a drug within the body. Although widely used in the pharmaceutical sector, the "PBPK" term is not strictly correct in the area of chemical risk assessment. An alternative is "PBTK" with the TK representing toxicokinetic, but this is not appropriate either (Clewell & Clewell, 2008). More general terms, such as physiologically based biokinetic (PBBK) or physiologically based kinetic (PBK), are thus more appropriate.

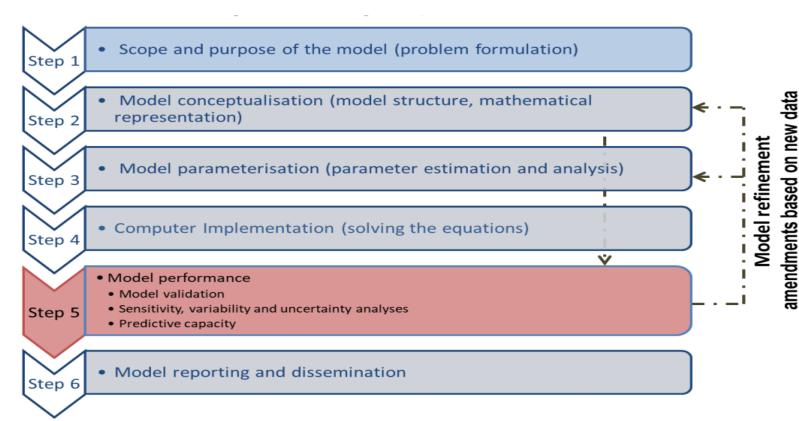
The needs & challenges....

- With current progress in science & NAMs → growing interest in developing and applying NAMs and PBK models due to the increase demanded from risk assessment.
- To increase the acceptance and use of these PBK models there is a need to demonstrate their validity.
- This is challenging in the case of data-poor chemicals that are lacking in kinetic data and for which predictive capacity cannot, therefore, be assessed.
- Need to promote the use of PBK models in regulatory risk assessment and facilitate dialogue between model developers and users

OECD GUIDANCE ON PHYSIOLOGICALLY BASED KINETIC (PBK) MODELING

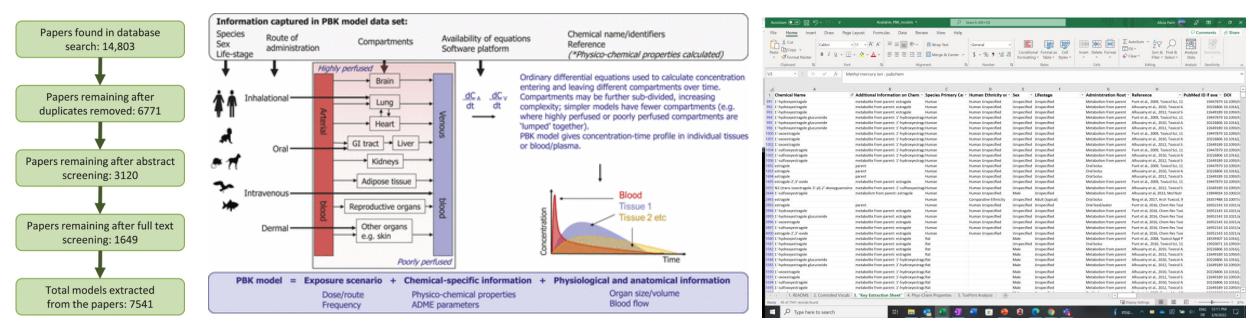
OECD PBK model document

- Focus mainly on PBK models parameterised with *in vitro* or *in silico* input data with respect to the chemical and biochemical information.
 - "data poor" situations *ab-initio*.
 - Little or no *in vivo* data for model verification.
 - Bottom up PBK model parameterisation rather than top down (fitting) approaches.
- Provide a model assessment framework for facilitating dialogue between PBK model developers and regulators
 - "data poor" situations
 - Uncertainties underlying the model input data, model structure and model predictions
- Provides guidance on characterisation and reporting of PBK models used in the regulatory assessment of chemicals
- Considerations for using human *in vitro* test systems to characterise the pharmacological/toxicological hazard, but applicable to other species, laboratory animals, farm animals, species of ecological importance.
- Document is not
 - A technical guidance on PBK model development or best practise
 - This is covered elsewhere (EPA 2006, WHO 2010)



Specific aims

- 1. A scientific workflow for characterizing and validating PBK models, with emphasis on models that are constructed using *in vitro and in silico data*.
- 2. Knowledge sources on *in vitro* and *in silico* methods that can be used to generate model parameters.
- 3. An assessment framework for evaluating PBK models for intended purposes.
- 4. A template for documenting PBK models.
- 5. Provide a checklist to support the evaluation of PBK model applicability according to context of use.


1. PBK Model workflow

Scientific workflow for characterising and validating PBK models, with emphasis on the use of in vitro and in silico data for absorption, distribution, metabolism and excretion (ADME) parameters, and in scenarios where in vivo kinetic data are limited or unavailable to parameterise model parameters

Step 5 - Assessment of model predictive capacity by using a read-across approach Schematic workflow to identify and use analogues in PBK model development and validation.

PBK model database – to inform PBK models for data poor chemicals – LJMU & EPAA (PI. Judith Madden)

1150 unique chemicals

Review Article

A Systematic Review of Published Physiologically-based Kinetic Models and an Assessment of their Chemical Space Coverage

Courtney V. Thompson¹^o, James W. Firman¹, Michael R. Goldsmith², Christopher M. Grulke², Yu-Mei Tan³, Alicia Paini⁴, Peter E. Penson¹, Risa R. Sayre², Steven Webb⁵ and Judith C. Madden

© The Authoriti 2021

Article rouse publishes

8.0

SAGE

The European Partnership for Alternative Approaches to Animal Testing

Interested in the PBK model database: It can be downloaded from https://data.jrc.ec.europa.eu/dataset/f98 e9abf-8435-4578-acd6-3c35b5d1e50c

VE EMPOWER HEALTH CARE

2. Regulatory assessment framework of PBK models

Context & Implementation	 Regulatory purpose Model applications Software implementation Peer input / review Documentation 		template	checklist
Model validity	 Biological basis (model strupt parameters) Theoretical basis of model Reliability of input parameters Sensitivity of output to parameters Goodness-of-fit and predict 	equations ers ameters	Reporting te	Evaluation o

Reports an assessment framework for evaluating PBK models, with emphasis on the major uncertainties underlying the model predictions.

3. PBK model Evaluation tool box

PBK Model Reporting Ter	mplate sections
-------------------------	-----------------

A. Name of model

B. Model developer and contact details

C. Summary of model characterisation, development, validation, and regulatory applicability

D. Model characterisation

E. Modelling workflow

- Step 1 Problem formulation and model conceptualisation
- Step 2 Model parameterisation
- Step 3 Solving the equations
- Step 4 Model Validation
- Step 5 Model reporting and dissemination

F. Identification of uncertainties

- model structure
- input parameters
- model output
- other uncertainties (e.g. model developed for different substance and/or purpose)
- G. Model implementation details
- software (version no)
- availability of code
- software verification / qualification
- H. Peer engagement (input/review)

I. Parameter tables

J. References and background information

• publications

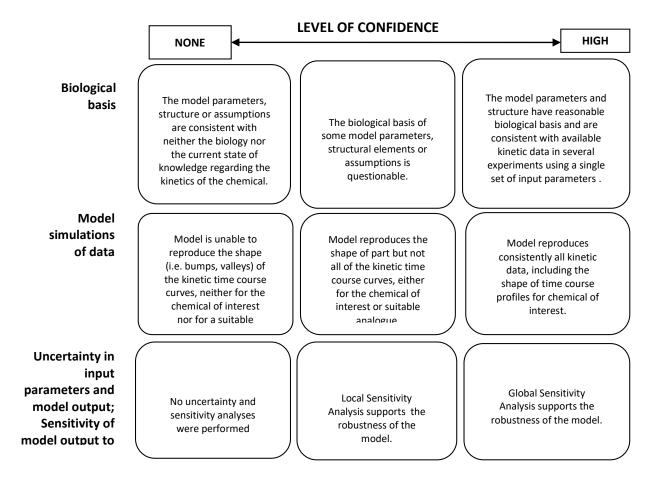
links to other resources

1. Model Reporting Template

2. Evaluation Checklist

PBK Model Evaluation Checklist	Checklist assessment	Comments
Name of the PBK model (as in the reporting template)		
Model developer and contact details		
Name of person reviewing and contact details		
Date of checklist assessment		
A. Context/Implementation		
A.1. Regulatory Purpose		
A.2. Documentation		
A.3 Software Implementation and Verification		
A.4 Peer engagement (input/review)		
B. Assessment of Model Validity		
B.1 Biological Basis (Model Structure and		
Parameters)		
B.3. Reliability of input parameters		
B.4. Uncertainty and Sensitivity Analysis		
B.5. Goodness-of-Fit and Predictivity		

3. PBK model Evaluation tool box


1. Model Reporting Template

2. Evaluation Checklist

3. Overall Evaluation Matrix (adapted from WHO 2010)

No. 331 Guidance Document on the Characterisation, Validation and Reporting of PBK Models for Regulatory Purposes (Glossy - Mono - Annex IV)

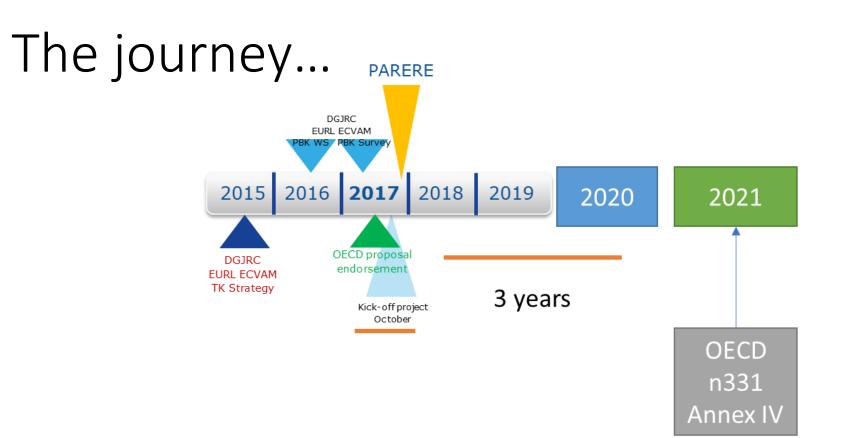
Thirteen case studies (listed in Annex 4)

Case Study I: Generic PBK	Case Study II: Generic PB	
model for farm animal species:	four fish species	
Cattle (Bos taurus), Swine (Sus scrofa), Sheep (Ovis aries) and	Grech et al. (2017, 2018 a,	
Chicken (Gallus gallus	Case Study XIII: Generic H	
<u>domesticus)</u>	compartment and QIVIVE F	
Lautz et al. (2019 a,b; 2020 a,b)	Wiecek et al. (2019 a,b)	

BK models for b; 2019) Human one PB-K models

a,0)

https://www.oecd.org/chemicalsafety/ testing/series-testing-assessmentpublications-number.htm


<u>Case Study III</u> In vitro-to In vivo extrapolation (IVIVE)	Case Study IV <u>PBK model</u> predictions using data <u>from analogues</u>			Physiolog pharmac (PBK) mo acryloniti Takano e
by PBTK modelling Fabian et al. 2019	<u>Pai</u>	ni et al., 2021		Takano e
Fabian et al. 2019		Case Study VII		
Case Study VI PBK model predictions for monoisononyl phthalate		Quantitative Proteomics-based Bottom-up PBK Modeling to Predict Chemical Exposure in Humans		
Miura et al.,2019		Chan et al. 2019		

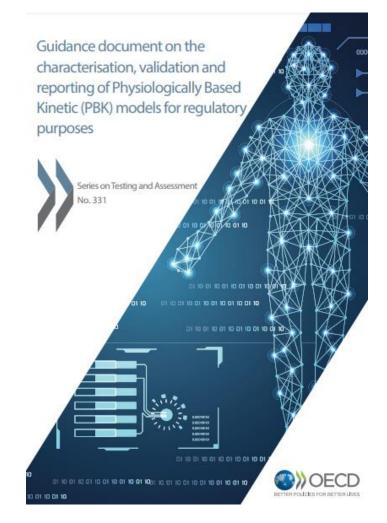
Case Study VIII PBK model application in species and route to route extrapolation	Case study IX Caffeine PBBK model to predict MoIE for risk assessment IATA caffeine CS		Case study X IVIVE-PBPK model for phenyl-1,4-dihydropyridine calcium channel antagonists Gardner et al.
Bessems et al., 2017		Case S	tudy XII
Case XI Using high-throughput pharmacokinetic simulation and in silico property predictions to predict herbicide absorption and bioavailability		Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products Moxon et al. 2020	
<u>Clark Robert D</u>			

Case Study V

ogically based cokinetic nodel for trile in humans et al 2010

The experts' of the OECD PBK model WG

M. Sachana, C. Tan, A. Paini, A. Worth, B. Meek, G. Loizou, M. Evans, JL. Dorne, I. Gardner, C. Ellison, T. Barton-maclaren, S. Kulkarni, K. Goss, I. Sorrell, E. Fabian, C. Brochot, L. Rousselberlier, H. Clewell, A. Nong, C.A. Gomes, J. Stadnicka, J. Dibella, J. Arnot, T. Preuss, M. Embry, M. Gwinn, G. Ouedraogo, P. Bos, J. Wambaugh, M. Zeilmaker, J. Chan, Ishida, Kanda, M.M. Mumtaz, M. Yoon, P. Hinderliter, J. West, W Drost, T. Russel, J. Melbourne, SC Gehen, K. Tabata, Y Dancik, R. D. Clark, M. Bolger, H Kojimaa, P. Chuan, Kuwa-shino, H. Yamazaki, H. Yoon.


OODESQ

Take home message

- Provide guidance on characterising, reporting, and evaluating PBK models used in regulatory assessment of chemicals
- Address challenges associated with developing and evaluating PBK models for chemicals without *in vivo* kinetic data
- Promote the use of PBK models in regulatory risk assessment and facilitate dialogue between model developers and users

If you submit an IATA \rightarrow you are encouraged to follow these templates when using and reporting PBK models.

- In evaluation of chemicals in RA, confidential docs.
- In peer reviewed publications; example,
 - Najjar et a., 2022 https://pubmed.ncbi.nlm.nih.gov/35058784/

OOO ESQLABS WE EMPOWER HEALTH CARE

Source

OECD PBK model GD (n 331 + ANNEXIV)

https://www.oecd.org/chemicalsafety/testing/series -testing-assessment-publications-number.htm

OECD PBK model GD webinar

https://www.youtube.com/watch?v=PT7w6PB97Ag&t=4252s

(webinar 10/05/2021)

https://www.youtube.com/watch?v=3u_ghfQsH58

(webinar 06/04/2022)

SOT2023 **CEC** course on OECD PBK GD – tentative accepted. Hands on experience EUROTOX2023 **CEC** course on OECD PBK GD – tentative accepted. Hands on experience Acknowledgments Magda Sachana (OECD) Cecilia Tan (US EPA) Andrew Worth (EC-JRC)

EPAA-LJMU PK model DB Judith Madden (LJMU)

All the expert scientists that contributed!

Thank you for your attention!

Alicia.paini@esqlabs.com

