Advances in Genotoxicity -Reconstructed Skin Comet

Kerstin Reisinger, Henkel AG & Co KGaA

ASCCT Webinar

21/01/2022

Agenda

- 1. Background
- 2. Concept of the use of 3D skin tissue equivalents in genotoxicity testing
- 3. Reconstructed skin comet assay
 - 1. Principle
 - 2. Validation exercise
 - 3. Regulatory acceptance
- 4. Reconstructed skin micronucleus assay
- 5. Strategic fit of assays in testing strategies
- 6. Summary/outlook

Introduction

Regulatory landscape

- Industry sectors in the European Union (EU) which restrict or ban animal experiments:
 - REACh 1907/2006, EU Cosmetics Directive 1223/2009/EC
- A growing number of regions ban animal testing for the safety assessment of cosmetics e.g.
 - Ban: EU, Australia, NZ, UK, Columbia
 - Phasing out: Japan, US, Canada
 - China started to allow *in vitro* only approaches for specific scenarios/cosmetic product categories

Assessment challenge

- Classical *in vitro* genotoxicity test battery is known to be very sensitive for *in vivo* genotoxicants/carcinogens
- However, the 'test battery' approach of combining assays leads to a reduced specificity increase in fraction of 'misleading positives'

Introduction

- Classical in vitro genotoxicity tests are based on 2D cell cultures
- 2D cell cultures limited in reflecting the *in vivo* situation e.g.,
 - "2D cultures have less than 1% of both cell density per volume and cell-to-cell contacts when compared to native tissues"

We personally care

- Highly proliferative
- 3D tissue
 - Key parameters similar to the 'in vivo' situation: proliferation, morphology, function
 - Suited as complex test systems for higher tier testing
 - Route of exposure
 - Intrinsic metabolic capacity

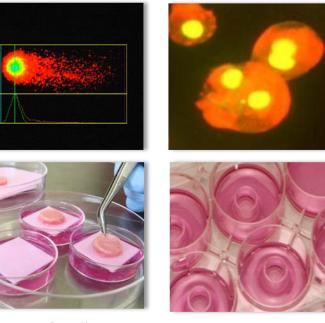
Approach

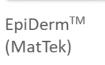
Cosmetics Europe's animal-free strategy for genotoxicity testing

Cosmetics Europe Genotoxicity program

- 1. Improve predictivity of current assays in specific MNvit
- 2. Develop and validate new *in vitro* assays
- 3. Investigate xenobiotic metabolism of respective test systems

Cosmetics Europe Genotoxicity program


- 1. Improve predictivity of current assays in specific MNvit
- 2. Develop and validate new *in vitro* assays
- 3. Investigate xenobiotic metabolism of respective test systems


Dermal route

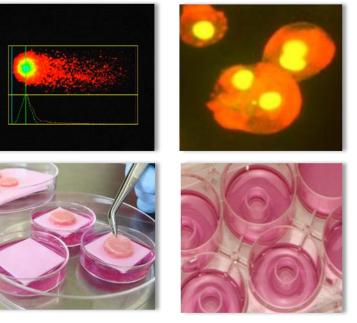
Dermal Route

3D Skin Comet Reconstructed Skin Comet assay **RSMN** Reconstructed Skin MicroNucleus test

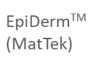
Phenion[®] Full-Thickness Skin Model www.phenion.com

- First *in vitro* options for genotoxicity assessment of the dermal exposure route.
- A route relevant for cosmetics, household prod. etc.
- Skin tissues based on primary p53 competent cells of human origin.
- Gene and protein expression patterns similar to human native skin e.g. xenobiotic metabolism - utilization of external metabolizing systems/rat liver S9 mix not required.
- Topical application reflects barrier function of the skin and allows application of concentrations that may be toxic to 2D cultures.

Dermal route


	Dermal Route				
	3D Skin Comet Reconstructed Skin Comet assay	RSMN Reconstructed Skin MicroNucleus test			
Epidermts Dermis					
	Dhanian [®] Full				

Phenion® Full-Thickness Skin Model www.phenion.com EpiDerm™ (MatTek) • Tissues have been selected from available ones based on assay specific performance criteria


Dermal route

Dermal Route

3D Skin Comet Reconstructed Skin Comet assay **RSMN** Reconstructed Skin MicroNucleus test

Phenion[®] Full-Thickness Skin Model www.phenion.com

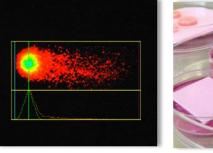
- Test systems combined with classical read-outs.
- Battery of two assays addresses all three endpoints.

Assay	Mutation	Mutation Structural			
		Chromosome damage			
RS Comet	x	Х			
RSMN		х	Х		

• Assays are intended to follow up on initial positive findings.

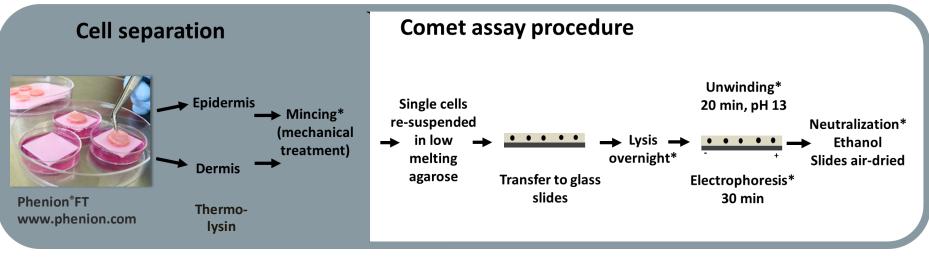
External reviews of 3D genotoxicity skin program

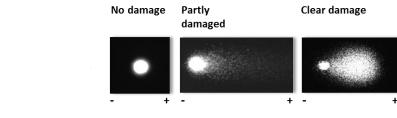
- IWGT WG "In vitro genotoxicity test approaches with better predictivity", Basel, Switzerland 2009
- HESI Workshop "New Technologies", Washington DC, USA 2012
- Expert Workshop on validation status and next steps for 3D skin based genotoxicity assays, Brussels, Belgium 2016
- CE Workshop on validation outcome of 3D skin-based genotoxicity assays and HET-MN, Brussels, Belgium 2017
- IWGT WG "Use of 3D Tissues in Genotoxicity Testing" Tokyo, Japan 2017



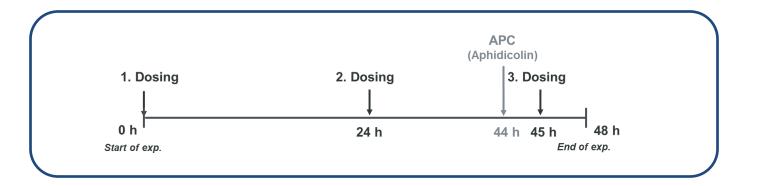
- ✓ 3D tissue models offer a more '*in-vivo*-like' behavior for key parameters like cell viability, proliferation differentiation, morphology, gene and protein expression, and function. Therefore they provide a valuable complement to the classical '2D' cell culture based assays.
- ✓ 3D tissue-based genotoxicity assays can be used as '2nd tier' assays to follow up on positive results from standard *in vitro* assays.

Comet assay


- Does not rely on proliferating cells and allows for the investigation of DNA damage in any cell culture or tissue that can be subjected to single cell isolation.
- Widely use method for the detection of DNA damage in genotoxicity testing and human biomonitoring studies or environmental monitoring.
- An OECD test guideline developed in 2014 of the *in vivo* mammalian, alkaline comet assay no. 489 in 2014 (updated).
- The alkaline comet assays detects a wide range of DNA damage including modification that lead to gene mutation.
- Recent publications show the high sensitivity of *in vivo* alkaline comet assay for carcinogens that show gene mutation activity (comparably efficient as TGR).


Test Principle – alkaline comet assay

*Buffers according to Tice 2000


Slide analysis

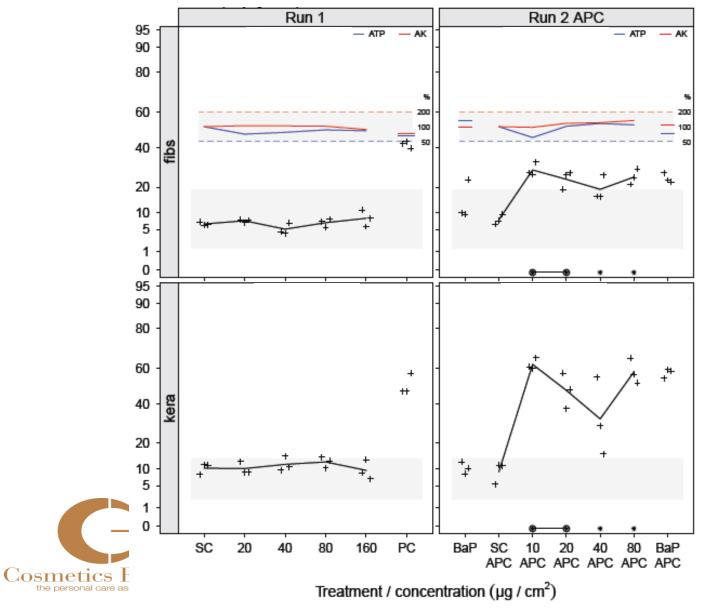
- Coding and staining (SYBR gold) of slides
- Semi-automated analysis (Comet Assay IV, Perceptive Instruments)
- Fluorescence intensity in comet tail (%tail DNA)

Experimental design

- Solvent control: acetone, 70% ethanol [v/v]
- Positive control: standard protocol MMS, APC protocol BaP
- At least three concentrations of test compound
- Three tissues per control/dose group
- Negative findings are further investigated in an APC experiment

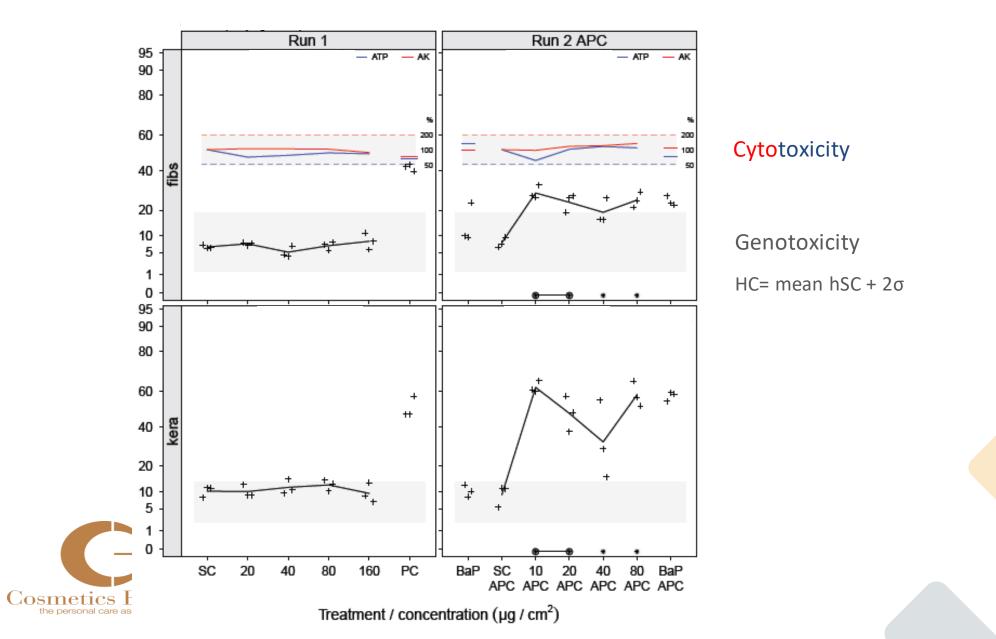
Cytotoxicity

- Protocol complemented with assays measuring general cellular toxicity as DNA damage also be triggered as a mechanism secondary to cytotoxicity
- Only a subset of dermal cells proliferate in both human native skin and full thickness skin tissues

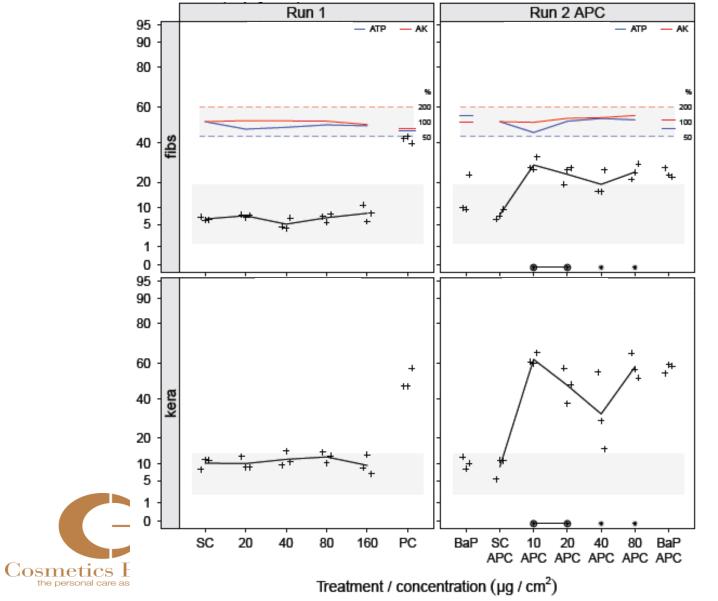

Proliferation as measurement for general cytotoxicity not appropriate
 Proliferation not required to e.g. manifest read-out or monitor cell cyles

Release of adenylate kinase (AK) into the culture medium – tissue viability Intracellular ATP concentration – energy status

Advantages

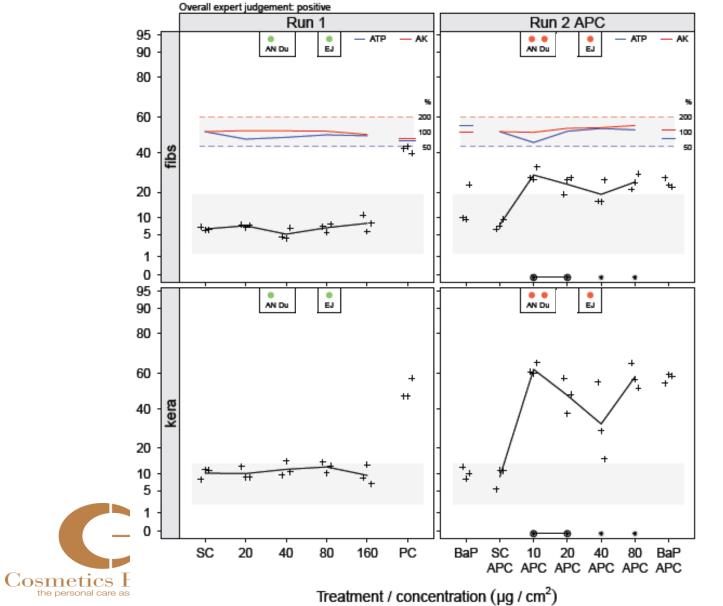

- Sensitive parameters
- Take effects into account that accumulate during 48 h exposure (AK) or that may arose shortly (ATP).
- Are detected in the same tissue used for genotoxicity measurement.

Study design



- (1) Solubility study
- (2) Dose range finder
 - Maximum dose 1600 µg/cm²
- (3) At least 2 main experiments

Read-outs


Validity criteria

- 3 valid dose groups based on cytotox.
 ≥ 50% intracellular ATP content compared to SC
 - ≤ 200% adenylate kinase activity compared to SC
- SC \leq 20% tail DNA
- PC 2x SC, MMS \geq 15% to SC

BaP \geq 5% to SC

Data evaluation – Example Benzo(*a*)pyrene

Prediction model

• Transformation, ANOVA, Dunnett

Biological relevance

- Dose-dependency
- Reproducibility of effects
- Outside historical control range

Labs provided overall expert judgement

Layout of validation

Phase 1

- Optimization and transferability
- Limited number of known compounds

Phase 2

Intra- and inter-laboratory reproducibilityUp to 18 double blinded compounds

Phase 3

- Extension of chemical space
- Up to 30 additional coded chemicals

Validation exercise

- Independent selection of chemicals
 - True positive chemicals
 - True negatives
 - Misleading positives
- Independent statistical analysis

Results - Expected negatives

Chemical	Lab A	Lab B	Lab C	Lab D	Lab E
Amitrole	neg				
Ampicillin sodium salt		neg			
N-butyl chloride	neg				
Curcumin		neg			
Cyclohexanone		neg		neg	neg
2,6-DAT		neg			
N,N-dicyclohexyl thiourea		neg			
Ethionamide	neg				
Di-(2-ethylhexyl) phthalate	neg		neg	neg	
Eugenol	neg		neg		neg
Glyoxal		neg			
D-Mannitol			neg		
Propyl gallate	neg	neg		neg	
Resorcinol		equiv			
Sodium xylene sulfonate			neg		
Tert-butylhydroquinone	neg				

Negative (neg)

- None of the criteria for a positive call apply
 Positive (pos)
- All criteria for a positive call fulfilled

Equivocal (equiv)

• Some but not all criteria for a positive call fulfilled

Results - Expected positives

Chemical	Lab A	Lab B	Lab C	Lab D	Lab E
2-AAF		pos			
IQ	neg				
Azidothymidine		pos			
BaP	pos				
4-Chloroaniline		neg			
Cadmium chloride	pos	pos		neg	
Cyclopenta[c,d]pyrene	pos				
Cyclophosphamide		pos			
2,4-DAT		neg			
DMBA	pos	pos	pos		
EMS		pos			
ENU		pos	pos		pos
Etoposide			pos		
MNNG		pos			
Mitomycin C			pos	pos	pos

Negative (neg)

- None of the criteria for a positive call apply
 Positive (pos)
- All criteria for a positive call fulfilled

Equivocal (equiv)

• Some but not all criteria for a positive call fulfilled

Reproducibility

Chemical	Disconcordant	Concordant	Total	%
Lab A	0	8	8	100
Lab B	2	13	15	87
Lab C	0	8	8	100
Lab D	1	4	8	80
Lab E	0	4		100
All Labs	3	37	5	93

Within laboratory - reproducibility

Between laboratory - reproducibility

Disconcordant	Concordant	Total	%
1	7	8	88

Pfuhler et al., 2021

Predictivity

Parameter	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Overall	Parameter
Chemicals considered	12	17	9	5	4	32	Chemicals considered
Sensitivity	80	80	100	50	100	80	Sensitivity
Specificity	100	94	100	100	100	97	Specificity
Accuracy	92	86	100	80	100	92	Accuracy

Pfuhler et al., 2021, based on final evaluation criteria

Intended regulatory use - Case study

Basic Brown 17

Hair dye - exclusively used in the absence of H₂O₂ as a direct hair dye

Case study: Basic Brown 17 Information on genotoxicity

No *in vivo* data available on

genotoxicity or carcinogenicity

Available data	Follow up testing			
 Ames - positive (+/- S9 mix) MNvit V79 - negative 	 MLA L5178Y - negative HPRT L5178Y - negative 			

 Lack of genotoxic effects in terms of mutagenicity and clastogenicity confirmed by 3D Skin Comet assay

Case study: Basic Brown 17

- Data submitted to the EU Scientific Committee on Consumer Safety (SCCS).
- Negative data of 3D Skin Comet assay were accepted in a weight-of-evidence approach.
- Basic Brown 17 was declared as 'Safe of use' in terms of genotoxicity (SCCS/1531/14, 24.03.2014).
- Two additional case studies on hair dye ingredients were successfully processed the same way (B34, A138).
- Since 2014 SCCS recommends using both the 3D Skin Comet assay and the RSMN to follow-up positive results from the *in vitro* standard test battery to build WoE in human relevant models.

Broader regulatory acceptance – Way to OECD TG

- IWGT WG "In vitro genotoxicity test approaches with better predictivity", Basel, Switzerland 2009
- HESI Workshop "New Technologies", Washington DC, USA 2012
- Expert Workshop on validation status and next steps for 3D skin-based genotoxicity assays, Brussels, Belgium 2016
- CE Workshop on validation outcome of 3D skin-based genotoxicity assays and HET-MN, Brussels, Belgium 2017
- IWGT WG "Use of 3D Tissues in Genotoxicity Testing" Tokyo, Japan 2017
- OECD WNT review of SPSF for guideline development. Paris, France 2019
- ECVAM peer-review (accepted into program)
 - Full submission of RS Comet and RSMN data in 2021

Studies to be contacted at Charles River Laboratories

Acknowledgements

Cosmetics Europe TF Genotoxicity

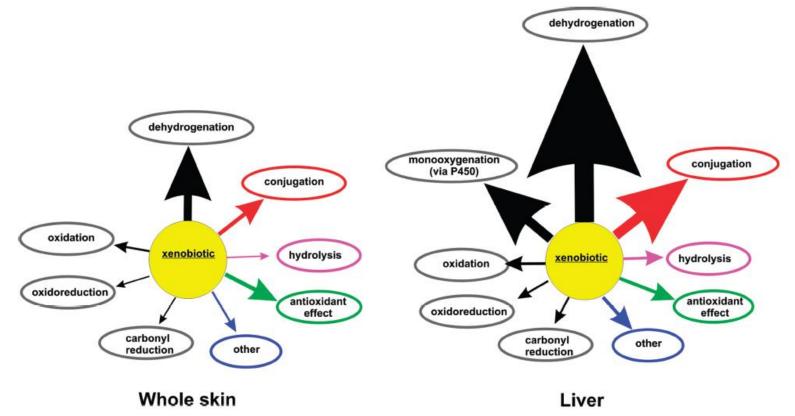
Rolf Fautz, Arianna Giusti, Nicola Hewitt, Sebastian Hoffmann, Julia Kenny, Gladys Ouedraogo, Kerstin Reisinger, Brian Wall

Collaborators

P&G, USA: Tom Downs, Brenda Barnett
TNO, The Netherlands: Cyrille Krul, Astrid Reuss
L'Oreal, France: Gladys Ouedraogo
Henkel, Germany: Kerstin Reisinger
BfR/FU Berlin, Germany: Frank Henkler, Joop
Brinkmann; Andre Said, Monika Schaefer-Korting
BASF, Germany: Markus Schulz, Veronica Blaz
Imperial College London, UK: Rob Edwards
University Duesseldorf: Ellen Fritsche

External Experts

David Kirkland Raffaella Corvi Rodger Curren Jan van Benthem Sebastian Hoffman Ralph Pirow Manfred Liebsch Tom Slaga Johannes Döhmer Peter Kasper Günter Speit


Cosmetics Europe

Thank for your attention

Skin Tissue-based Assays

Dermal application of test material, multiple application protocol enables enzyme induction

Hewitt et al, <u>Metabolic competency of 3D skin models similar to human skin</u> Toxicological Sciences 133(2), 209–217, 2013 Wiegand et al., <u>Dermal xenobiotic metabolism: a comparison between native human skin, four in vitro skin test systems and a liver system.</u> Skin Pharmacol Physiol. 27(5):263-75.

Historical control data of standard protocol

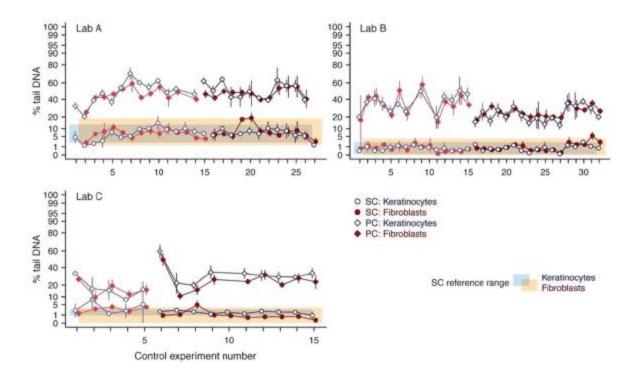


Figure 2. Historical control data of standard experiments. Percentage of tail DNA in the solvent control (SC) and positive control (PC, i.e., MMS) of individual experiments as obtained with the Phenion®FT during Phase 1 and 2 of coded testing are shown. The SC values (circles) and PC values (diamonds) for the keratinocytes (dark blue symbols and lines) and fibroblasts (red symbols and lines) are given as mean \pm SD (N = 2 samples each). Faint symbols indicate values obtained in Phase 1 and dark symbols indicate values from Phase 2 of the validation. The light blue-shaded and orange-shaded areas indicate the reference range (mean \pm SD) for the SC, i.e. historical control, for keratinocytes and fibroblasts, respectively. The reference ranges were derived from the control data of Phase 2. The y-axis is on the arcsine square-root transformed scale, but the tick labels are expressed in units of the percentage scale.

Historical control of APC experiments

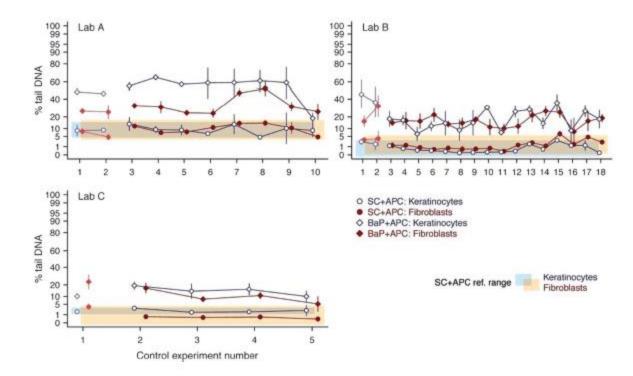


Fig. 3. Historical control data of APC experiments. Percentage of tail DNA in the solvent control (SC) and positive control (PC, i.e., BaP) both with APC of individual experiments as obtained with the Phenion/®FT during Phases 1 and 2 of coded testing are shown. The SC + APC values (circles) and BaP + APC values (diamonds) for the keratinocytes (dark blue symbols and lines) and fibroblasts (red symbols and lines) are given as meen ± SD (N = 3 samples each). Faint symbols indicate values obtained in Phase 1 and dark symbols indicate values from Phase 2 of the validation. The light blue-shaded and orange-shaded areas indicate the reference range (mean ± 2 SD) for the SC, i.e., historical control, for keratinocytes and fibroblasts, respectively. The reference ranges were derived from the control data of Phase 2. The y-axis is on the arcsine square-root transformed scale, but the tick labels are expressed in units of the percentage scale.

Improving scoring efficiency?

- Scoring of comet slides is time consuming, automated process could also improve data density
- Attempt to establish a protocol that enables the use of CometChip (CC) technology

Challenges to overcome:

Cosmetics Europe

- The skin comet assay utilizes Phenion FT tissues and a mincing protocol to generate a suspension of cells/nuclei
 - Cell number generated per tissue is rather low (lower than ideal for the CC), and somewhat inconsistent
 - The cells are not 'rounded', and don't load well into the CC
 - -> Not enough cells for scoring
- Tried trypsin protocol which works well for RSMN. Loads better but generates high background for comet We personally care

References

Test protocol Validation phase I	Reisinger K, Blatz V, Brinkmann J, Downs TR, Fischer A, Henkler F, Hoffmann S, Krul C, Liebsch M, Luch A, Pirow R, Reus AA, Schulz M, Pfuhler S. Validation of the 3D Skin Comet assay using full thickness skin models: Transferability and reproducibility. Mutat Res Genet Toxicol Environ Mutagen. 827:27-41. PMID: 29502735
Validation Final evaluation	Pfuhler S, Pirow R, Downs TR, Haase A, Hewitt N, Luch A, Merkel M, Petrick C, Said A, Schäfer-Korting M, Reisinger K. Validation of the 3D reconstructed human skin comet assay, an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis. 36(1):19-35. doi: 10.1093/mutage/geaa009.
APC protocol	Brinkmann J, Stolpmann K, Trappe S, Otter T, Genkinger D, Bock U, Liebsch M, Henkler F, Hutzler C, Luch A. Metabolically competent human skin models: activation and genotoxicity of benzo[a]pyrene. Toxicol Sci. 2013 Feb;131(2):351-9
Pre-project Analysis guidance	Reus AA, <u>Reisinger K</u> , Downs TR, Carr GJ, Zeller A, Corvi R, Krul CA, Pfuhler S. Comet assay in reconstructed 3D human epidermal skin models - investigation of intra- and inter-laboratory reproducibility with coded chemicals. Mutagenesis. 2013 28(6):709-20. PMID: 24150594
Case studies on hair dyes supported by the	B007-Basic Brown 17 http://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_152.pdf
3D Skin Comet assay and approved by the	A138 -2,6-Dihydroxyethylaminotoluene http://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_188.pdf
SCCS in the EU	B34 -N,N'-Bis-(2-hydroxyethyl)-2-nitro-p-phenylenediamine https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_196.pdf
Book chapters	In: Alternatives for dermal toxicology testing. Ed. C. Eskes. E. v. Vliet, H. Maibach, Springer Part V Genotoxicity 34. Pfuhler S, <u>Reisinger K</u> . Current Status. DOI 10.1007/978-3-319-50353-0_36
	36. <u>Reisinger K</u> , Pfuhler S. 3D Skin Comet Assay. DOI 10.1007/978-3-319-50353-0_38
	37. <u>Reisinger K</u> , Pfuhler S. Role in a Testing Strategy. DOI 10.1007/978-3-319-50353-0_39